
November 12, 2025

NUMERICAL METHODS I
Lab 1: Linux Operating System, Unix Commands, Bash shell

Hervé Tajouo Tela

November 12, 2025

November 12, 2025 1 / 1

What is an Operating System (OS)?

■ Software interface between the user and the computer hardware

■ Controls the execution of other programs

■ Responsible for managing multiple computer resources (CPU,
memory, disk, display, keyboard, etc.)

■ Examples of OS: Windows, Unix/Linux, OSX.

2 of 99

Unix Introduction

■ UNIX is an operating system which was first developed in the
1960s and has been under constant development since.

■ It is a stable, multi-user, multi-tasking system for servers, desktops
and laptops.

■ UNIX systems also have a graphical user interface (GUI) similar to
Microsoft Windows which provides an easy to use environment.

■ There are many different versions of UNIX, although they share
common similarities. The most popular varieties of UNIX are Sun
Solaris, GNU/Linux and MacOS X.

3 of 99

The UNIX operating system

■ The UNIX operating system is made of 3 parts: the kernel, the
shell and the programs.

■ The kernel of UNIX is the hub of the operating system: it allocates
time and memory to programs and handles the filestore and
communications in response to system calls.

■ The shell acts as an interface between the user and the kernel.
When a user logs in, the login program checks the username and
password, and then starts another program called the shell. The
shell is a command line interpreter (CLI).

4 of 99

How does the Linux OS Work?

5 of 99

Linux File System

■ A directory in Linux is similar to a ”Folder” in Windows OS
■ Files are organized into directories and sub-directories.
■ In Linux, paths begin at the root directory which is the top-level of the file system and

is represented as a forward slaxh (/).
■ Forward slash is used to separate directory and file names.

6 of 99

The Command Line: Basic Navigation
A command line or terminal is a text based interface to the system. You are able to enter
commands by typing them on the keyboard and feedback will be given to you as text.

Where are we?

■ pwd: ”Print Working Directory”.
It tells you what your current or present directory is.

What’s in our current location?

■ ls: ”List” ⇒ ls [options][location]

It tells you what is in your current or present directory.

7 of 99

The Command Line: Basic Navigation
What’s in our current location?
■ ls: ”List” ⇒ ls [options][location]

It tells you what is in your current or present directory.

8 of 99

The Command Line: Basic Navigation
Absolute and relative paths
A relative path is about a file or directory location relative to where we currently are in
the file system. An absolute path is about a file or directory location in relation to the
root of the file system.

■ pwd: ”Print Working Directory”.

■ ls: ”List” ⇒ ls [options][location]

9 of 99

The Command Line: Basic Navigation

More on paths

■ ∼(tilde): this is a shortcut for your home directory. eg, if your home directory
is /home/steve then you could refer to the directory Documents with the path
/home/steve/Documents or ∼/Documents.

■ .(dot): this is a reference to your current directory. eg, in the previous example
we referred to Documents on line 4 with a relative path. It could also be
written as ./Documents.

■ ..(dotdot): this is a reference to the parent directory. You can use this several
times in a path to keep going up the hierarchy. eg if you were in the path
/home/steve you could run the command ls ../../ and this would do a
listing of the root directory.

10 of 99

The Command Line: Basic Navigation
More on paths

■ pwd: ”Print Working Directory”.

■ ls: ”List” ⇒ ls [options][location]

11 of 99

The Command Line: Basic Navigation
Let’s move around a bit
■ pwd: ”Print Working Directory”.
■ ls: ”List” ⇒ ls [options][location]

■ cd: ”Change Directory” ⇒ cd [location]

12 of 99

Basic Navigation: Exercises

■ Use the commands cd and ls to explore what directories are on your system and

what’s in them. Make sure you use a variety of relative and absolute paths. Some

interesting places to look at are:

□ /etc – Stores config files for the system.

□ /var/log – Stores log files for various system programs. (You may not have

permission to look at everything in this directory. Don’t let that stop you exploring

though. A few error messages never hurt anyone.)

□ /bin – The location of several commonly used programs (some of which we will

learn about in the rest of this tutorial.

□ /usr/bin – Another location for programs on the system.

■ Now go to your home directory using 4 different methods..

■ Make sure you are using Tab Completion when typing out your paths too. Why do
anything you can get the computer to do for you?

13 of 99

More About Files
Everything is a file:
Everything in linux is a file. A text file is a file, a directory is a file, your keyboard is a file,
your monitor is a file, etc.
Linux is case sensitive:
Unlike Windows which is case insensitive, in Linux it is possible to have two or more files
and directories with the same name but letters of different case.
Linux is an extensionless system:
In Linux unlike Windows, the system ignores the extension of a file and looks inside the
file to determine what type of file it is.

■ file: ”type of file” ⇒ file [path]

14 of 99

More About Files
Space in names:
A space on the command line is how we separate items. They are how we know about
what is the program name and can identify each command line argument. Space in files
are valid but we need to be careful with them.

Quotes:
To represent space in names we can use quotes around the entire item. Anything inside
quotes is considered a single item.

15 of 99

More About Files
Escape characters:
Another way of representing spaces in names is to use and escape character, which is a
backslash (\).

Hidden files and directories:
In Linux, files or directories hat are hidden have their name beginning with a .(full stop).
Files are hidden for various reasons: configuration files are usually hidden. To view hidden
files and directories in your current location you simply have to type ls -a.

16 of 99

More About Files: Exercises

■ Try running the command file giving it a few different entries. Make sure you use a
variety of absolute and relative paths when doing this.

■ Now issue a command that will list the contents of your home directory including
hidden files and directories.

17 of 99

Manual Pages
What are manual pages?
Manual pages are a set of pages that explain every command available on your syetem
including what they do, the specifics of how to run them and what command line
arguments they accept. To invoke the manual pages you should type the following
command: man <command to look up>.

18 of 99

Manual Pages
Searching the manual pages
It is possible to do a keyword search on the Manual Pages: it is helpful if you’re not qure
about what command to use but you know what you want to achieve. To invoke the
manual pages search you should type the following command: man -k <search term>.
While you are in a manual page you can also perform a search by pressing ′/′ followed by
the term you want to search. You can go through all the possible options by pressing n.
More on the Running of Commands
Being proficient at Linux often means knowing which command line options we should use
to modify the behaviour of our commands to suit our needs. Most of these commands
have a long and short version: the long version is often easier to remember but the short
one allows you to chain multiple together more easily.

19 of 99

Manual Pages: Exercises

■ Have a skim through the man page for ls. Have a play with some of the command line
options you find there. Make sure you play with a few as combinations. Also make
sure you play with ls with both absolute and relative paths.

■ Now try doing a few searches through the man pages. Depending on your chosen
terms you may get quite a large listing. Look at a few of the pages to get a feel for
what they are like..

20 of 99

File Manipulation
Making a directory
Making a directory is pretty easy. The command is simply

■ mkdir: ”Make Directory” ⇒ mkdir [options] <Directory>

Remember that when we supply a directory in the above comand we are actually
supplying a path which can be a relative or absolute path.

21 of 99

File Manipulation
Making a directory
There are a few useful options available for mkdir. The option -p which tells mkdir to
make parent directories as needed. The option -v which makes mkdir tell us what it does.

22 of 99

File Manipulation
Removing a directory
Removing or deleting a directory is also easy. However there is no undo, so one has to be
careful before using this command. The command is simply

■ rmdir: ”Remove Directory” ⇒ rmdir [options] <Directory>

rmdir supports the options -p and -v similar to mkdir.

Also the directory must be empty before it may be removed.

23 of 99

File Manipulation
Creating a Blank File
A lot of commands that involve manipulating data within a file have the feature that they
will create a file automatically if we refer to it and it doesn’t exist. We can use this
charateristic to create blank files using a command

■ touch: ⇒ touch [options] <filename>

24 of 99

File Manipulation
Copying a File or Directory
The command to copy a file or directory is simple

■ cp: ”Copy” ⇒ cp [options] <source> <destination>

cp supports various options among which -r (’recursive’) allows to copy directories.

25 of 99

File Manipulation
Moving a File or Directory
Moving files or directories is done with a command similar to cp with the advantage that
we can me move directories without having to provide the -r option. The command is
simply

■ mv: ”Move” ⇒ mv [options] <source> <destination>

rmdir supports the options -p and -v similar to mkdir.

Also the directory must be empty before it may be removed.

26 of 99

File Manipulation
Renaming Files and Directories
We can use the command mv in a creative way to achieve the outcome of renaming a file
or directory. If we specify the destination to be the same directory as the source, but with
a different name, then we have used mv to rename a file or directory.

27 of 99

File Manipulation
Removing a File
Just like with rmdir, the action of removing a file can’t be undone, so one has to be
careful before using this command. The command is simply

■ rm: ”Remove” ⇒ rm [options] <file>

28 of 99

File Manipulation
Removing non empty Directories
rm has several options that alter its behaviour. The option -r is a particularly useful one
and it behaves in a similar fashion as with cp. It allows us to remove directories and all
files and directories contained within.

A combination of options is mixing the -r with -i (’interactive’) as it will prompt you
before removing each file and directory and it gives you the option to cancel the command.

29 of 99

File Manipulation: Exercises

■ Start by creating a directory in your home directory in which to experiment.

■ In that directory, create a series of files and directories (and files and directories in
those directories).

■ Now rename a few of those files and directories.

■ Delete one of the directories that has other files and directories in them.

■ Move back to your home directory and from there copy a file from one of your
subdirectories into the initial directory you created.

■ Now move that file back into another directory.

■ Rename a few files

■ Next, move a file and rename it in the process.

■ Finally, have a look at the existing directories in your home directory. You probably
have a ’Documents’, ’Downloads’, ’Music’ and ’Images’ directory etc. Think about
what other directories may help you keep your account organised and start setting this
up.

30 of 99

Vi Text Editor
A Command Line Editor

■ vi is a command line text editor.

■ vi has been designed to work with the limitations of being a single window with text
input and output only, just like the command line.

■ vi is intended as a plain text editor (similar to Notepad on Windows or Textedit on
Mac) as opposed to a word processing suite such as Word or Pages.

■ Everything in vi is done with the keyboard.

■ vi has two modes: insert (or input) mode and edit mode.

■ In the input mode you may input or enter content into the file.

■ In the edit mode you can move around the file, perform actions such as deleting,
copying, search and replace, saving etc.

31 of 99

Vi Text Editor
vi is usually use with a simple command: vi <file>. It allows us to remove directories
and all files and directories contained within.

Once the file is open you are in edit mode.

To get into insert mode you can press the i.

After editing the file you can press Esc and return to edit mode.

32 of 99

Vi Text Editor
Saving and Exiting

There are several ways about doing this. They all essentially do the same thing so pick
whichever way youp prefer. However, for all these, make sure you are in edit mode first.

■ ZZ (in capitals) – save and exit.

■ :q! – discard all changes since the last save and exit.

■ :w – save file but don’t exit.

■ :wq – again, save and exit.

■ :x – once more, save and exit.

33 of 99

Vi Text Editor
Other Ways to View Files
vi allows us to edit files. But it can also be used to view files. If we simply want to view a
file, a few commands are available to do it.

■ The command less allows yo to view large files. less <file>. less allows you to
move up and down within a file using the arrow keys. You may go forward a whole
page using the SpaceBar and quit using q. A command similar to less is the
command more.

■ The command cat (’concatenate’) has as its main purpose to join files together. But
it can also be used just to view files. It is used as cat <file>.

However if the file is large, then most of the content will fly accross the screen and
we’ll only see the last page. The commands less and more will therefore be more
appropriate to view large files.

34 of 99

Vi Text Editor
Navigating a file in vi

Once you have opened a file using the vi command, in insert mode you can use the
arrow keys to move the cursor around. Then hitting the Esc button you may go back to
edit mode. Here are some commands that that cand be entered to move around a file.

■ Arrow keys – move the cursor around.

■ j, k, h, l – move the cursor down, up, left and right (similar to the arrow keys).

■ ^(caret) – move cursor to the beginning of current line.

■ $ – move cursor to the end of the current line.

■ nG – move to the nth line.

■ G – move to the last line.

■ w – move to the beginning of the word.

■ nw – move forward n word.

■ b – move to the beginning of the previous word.

■ w – move back n word.

■ { – move backward one paragraph.

■ } – move forward one paragraph.

35 of 99

Vi Text Editor
Deleting Content

Here are some commands that can be entered to delete content in vi.

■ x – delete a single character.

■ nx – delete n characters.

■ dd – delete the current line.

■ dn – d followed by a movement command. Delete to where the movement command
would have taken you. (eg d3w means delete 5 words).

Undoing

Here are 2 commands that can be entered to undo and action in vi.

■ u – undo the last action.

■ U (capital) – undo all the changes to the current line.

36 of 99

Vi Text Editor: Exercises

■ Start by creating a file and putting some content into it.

■ Save the file and view it in both cat, less and more.

■ Go back into the file in vi and enter some more content.

■ Move around the content using at least 6 different movement commands.

■ Play about with several of the delete commands, especially the ones that incorporate a
movement command. Remember you may undo your changes so you don’t have to
keep putting new content in.

37 of 99

Wildcards
What are Wildcards?
Wildcards are a set of building blocks that allow you to create a pattern defining a set of
files or directories. A basic set of wild cards are:
■ * – represents zero or more characters.
■ ? – represents a single character.
■ [] – represents a range of characters

We first introduce the *. Below we list every entry beginning with a b.

38 of 99

Wildcards
More Examples
Wildcards work just the same if the path is absolute or relative.

We now introduce the ? operator: we are looking at each file whose 2nd letter is ”i”.

39 of 99

Wildcards
More Examples
We now introduce the range [] operator.
We are looking at every file whose name either begins with ”s” or ”v”.

If we want every file whose name includes a digit in it we could do the following:

We may also reverse a range using the caret (^) which means look for any character which
is not one of the following.

40 of 99

Wildcards
Real World Examples
Find the file type of every file in a directory.

Move all files of type either jpg or png (image files) into another directory.

Find out the size and modification time of the .bash history file in every users home directory.

41 of 99

Wildcards: Exercises

■ A good directory to play with is ”/etc” which is a directory containing config files for
the system. As a normal user you may view the files but you can’t make any changes
so we can’t do any harm. Do a listing of that directory to see what’s there. Then pick
various subsets of files and see if you can create a pattern to select only those files.

■ Do a listing of ”/etc” with only files that contain an extension.

■ What about only a 3 letter extension?

■ How about files whose name contains an uppercase letter? (hint: [[:upper:]] may be
useful here)

■ Can you list files whose name is 4 characters long?

42 of 99

Permissions
Permissions on files and directories specify what a particular person may or may not do.
What are they?
Linux permissions dictate 3 things you may do with a file:

■ r read – you may view the contents of the file.

■ w write – you may change the contents of the file.

■ x execute – you may execute or run the file if it is a program or script.

For every file or directory 3 sets of people for whom permissions mays be specified:

■ owner – a single person who owns the file.

■ group – every file belongs to a single group.

■ others – everyone else who is not in the group or the owner.

View Permissions?
To view permission it suffices to type a command: ls -l [path]

43 of 99

Permissions
Change Permissions
To change permission, a command is used: chmod [permissions] [path].
chmod has permissions arguments that are made up of 3 components.
■ Who are we changing the permissions for? [ugoa] – user (owner), group, others, all.
■ Are we granting/revoking the permission – indicated with either plus(+) or minus(-).
■ Which permission are we setting? – read (r), write (w) or execute (x).

Exple: Grant the execute permission to the group. Then remove the write permission for the owner.

44 of 99

Permissions
Change Permissions
Exple: Don’t want to assign permissions individually? We can assign multiple permissions at once.

45 of 99

Permissions
Setting Permissions Shorthand
It is possible to connect binary numbers with 3 digits (between 000 and 111) to octal
numbers (between 0 and 7) and link those to various permissions. So we will have 3 bits
and 3 permissions. If we think of 1 representing on and 0 as off, then a single octal
number may be used to represent a set of permissions for a set of people. Three numbers
and we can specify permissions for the user, group and others.

People often remember commonly used number sequences for different types of files and

find this method quite convenient. For example 755 or 750 are commonly used for scripts.

46 of 99

Permissions
Permissions for Directories
The same permissions use for files may be used for directories but with a slightly different
behaviour.
■ r – you have the baility to read the contents of the directory (ie do an ls).
■ w – you have the ability to write into the directory (ie create files and directories).
■ x – you have the ability to enter that directory (ie cd).

47 of 99

Permissions
Permissions for Directories

The Root User

On a Linux system there are only 2 people usually who may change the permissions of a

file or directory. The owner of the file or directory and the root user. The root user is a

superuser who is allowed to do anything and everything on the system.

48 of 99

Permissions: Exercises

■ First off, take a look at the permissions of your home directory, then have a look at
the permissions of various files in there.

■ Now let’s go into your linuxtutorialwork directory and change the permissions of some
of the files in there. Make sure you use both the shorthand and longhand form for
setting permissions and that you also use a variety of absolute and relative paths. Try
removing the read permission from a file then reading it. Or removing the write
permission and then opening it in vi.

■ Let’s play with directories now. Create a directory and put some files into it. Now play
about with removing various permissions from yourself on that directory and see what
you can and can’t do.

■ Finally, have an explore around the system and see what the general permissions are
for files in other system directories such as /etc and /bin

49 of 99

Filters
What are they?
■ A filter, in the context of the Linux command line, is a program that accepts textual

data and then transforms it in a particular way.
■ Filters are a way to take raw data, either produced by another program, or stored in a

file, and manipulate it to be displayed in a way more suited to what we are after.
■ These filters often have various command line options that will modify their behaviour

so it is always good to check out the man page for a filter to see what is available.

In the following we are going to use the following file ’mysampledata.txt’ for our examples.

50 of 99

Filters
head ⇒ head [-number of lines to print][path]

■ Head is a program that prints the first so many lines of its input. By default it will
print the first 10 lines but we may modify this with a command line argument.

51 of 99

Filters
tail ⇒ tail [-number of lines to print][path]

■ Tail is the opposite of head. Tail is a program that prints the last so many lines of its
input. By default it will print the last 10 lines but we may modify this with a
command line argument.

52 of 99

Filters
sort ⇒ sort [-options][path]

■ Sort will sort its input, nice and simple. By default it will sort alphabetically but there
are many options available to modify the sorting mechanism. Be sure to check out the
man page to see everything it may do.

53 of 99

Filters
nl ⇒ nl [-options][path]

■ nl stands for number lines and it does just that.

54 of 99

Filters
nl ⇒ nl [-options][path]

■ The basic formatting is ok but sometimes you are after something a little different.
With a few command line options, nl is happy to oblige.

55 of 99

Filters
wc ⇒ wc [-options][path]

■ wc stands for word count and it does just that (as well as characters and lines). By
default it will give a count of all 3 but using command line options we may limit it to
just what we are after. Options -l (lines), -m (characters), -w (words) are possible.

56 of 99

Filters
cut ⇒ cut [-options][path]

■ cut is a nice little program to use if your content is separated into fields (columns) and
you only want certain fields.

■ In our sample file we have our data in 3 columns, the first is a name, the second is a
fruit and the third an amount. Let’s say we only wanted the first column.

57 of 99

Filters
cut ⇒ cut [-options][path]
■ cut defaults to using the TAB character as a separator to identify fields. In our file we

have used a single space instead so we need to tell cut to use that instead.
■ The separator character may be anything you like, for instance in a CSV file the

separator is typically a comma (,). This is what the -d option does (we include the
space within single quotes so it knows this is part of the argument). The -f option
allows us to specify which field or fields we would like. If we wanted 2 or more fields
then we separate them with a comma as below.

58 of 99

Filters
sed ⇒ sed <expression> [path]
■ sed stands for Stream Editor and it effectively allows us to do a search and replace on

our data. It is quite a powerful command but we will use it here in it’s basic format.
■ A basic expression is of the following format: s/search/replace/g.
■ The initial s stands for substitute and specifies the action to perform. Then between

the first and second slashes (/) we place what it is we are searching for. Then
between the second and third slashes, what it is we wish to replace it with. The g at
the end stands for global and is optional. If we omit it then it will only replace the
first instance of search on each line. With the g option we will replace every instance
of search that is on each line.

59 of 99

Filters
uniq ⇒ uniq [options] [path]
■ uniq stands for unique and it’s job is to remove duplicate lines from the data. One

limitation however is that those lines must be adjacent (ie, one after the other).
■ Let’s say that our sample file was actually generated from another sales program but

after a software update it had some buggy output.

60 of 99

Filters
uniq ⇒ uniq [options] [path]

■ uniq stands for unique and it’s job is to remove duplicate lines from the data. One
limitation however is that those lines must be adjacent (ie, one after the other).

■ No worries, we can easily fix that using uniq.

61 of 99

Filters
tac ⇒ tac [path]

■ The program tac is actually cat in reverse. It was named this as it does the opposite
of cat. Given data it will print the last line first, through to the first line.

■ Maybe our sample file is generated by writing each new order to the end of the file. As
a result, the most recent orders are at the end of the file. We would like it the other
way so that the most recent orders are always at the top.

62 of 99

Filters: Exercises

■ First off, you may want to make a file with data similar to our sample file.

■ Now play with each of the programs we looked at above. Make sure you use both
relative and absolute paths.

■ Have a look at the man page for each of the programs and try at least 2 of the
command line options for them.

63 of 99

Grep and Regular Expressions
What are they?
■ Regular expressions are similar to the wildcards as they allow us to create a pattern.
■ Regular expressions are typically used to identify and manipulate specific pieces of

data. EG. We may wish to identify every line which contains an email address or a url
in a set of data

■ We will use a similar sample file as before, included below as a reference.

64 of 99

Grep and Regular Expressions
eGrep ⇒ egrep [comman line options]<pattern>[path]

■ egrep is a program which will search a given set of data and print every line which
contains a given pattern.

■ It is an extension of a program called grep. Its name is odd but based upon a
command which did a similar function, in a text editor called ed. It has many
command line options which modify its behaviour so its worth checking its man page.

■ The -v option tells grep to instead print every line which does not match the pattern.

■ If we want to identify every line which contains the string ’mellon’

65 of 99

Grep and Regular Expressions
eGrep ⇒ egrep [comman line options]<pattern>[path]

■ Sometimes we want to know not only which lines matched but their line number as
well.

■ Maybe we are not interested in seeing the matched lines but wish to know how many
lines did match.

66 of 99

Grep and Regular Expressions
Regular Expressions Overview

■ .(dot) – a single character.

■ ? – the preceding character matches 0 or 1 times only.

■ * – the preceding character matches 0 or more times.

■ + – the preceding character matches 1 or more times.

■ n – the preceding character matches exactly n times.

■ n,m – the preceding character matches at least n times and not more than m times.

■ [agd] – the character is one of those included within the square brackets.

■ [^agd] – the character is not one of those included within the square brackets.

■ [c-f] – the dash within the square brackets operates as a range. In this case it means
either the letters c, d, e or f.

■ () – allows us to group several characters to behave as one.

■ |(pipe symbol) – the logical OR operation.

■ ^ – matches the beginning of the line.

■ $ – matches the end of the line.

67 of 99

Grep and Regular Expressions
Some Examples
■ Let’s say we wish to identify any line with two or more vowels in a row. In the example

below the multiplier 2, applies to the preceding item which is the range.

■ How about any line with a 2 on it which is not the end of the line. In this example the
multiplier + applies to the . which is any character.

68 of 99

Grep and Regular Expressions
Some Examples
■ The number 2 as the last character on the line.

■ And now each line which contains either ’is’ or ’go’ or ’or’.

■ Maybe we wish to see orders for everyone who’s name begins with A - K.

69 of 99

Grep and Regular Expressions: Exercises

■ You may want to make a file with data similar to our sample file.

■ Now play with some of the examples we looked at above.

■ Have a look at the man page for egrep and try atleast 2 of the command line options
for them.

70 of 99

Piping and Redirection
What are They?
■ Every program we run on the command line automatically has three data streams

connected to it.
■ STDIN (0) – Standard input (data fed into the program)
■ STDOUT (1) – Standard output (data printed by the program, defaults to the

terminal)
■ STDERR (2) – Standard error (for error messages, also defaults to the terminal)

■ Every program we run on the command line automatically has three data streams
connected to it.

■ Piping and redirection is the means by which we may connect these streams between
programs and files to direct data in interesting and useful ways.

71 of 99

Piping and Redirection
Redirecting to a File

■ We normally get our output on the screen which is convenient usually.

■ We sometimes may wish to save it into a file to keep as a record for example.

■ The greater than operator (>) indicates to the command line that we wish the
programs output (or whatever it sends to STDOUT) to be saved in a file instead of
printed to the screen.

72 of 99

Piping and Redirection
Saving to an Existing File

■ If we redirect to a file which does not exist, it will be created automatically for us. If
we save into a file which already exists, however, then its contents will be cleared,
then the new output saved to it.

73 of 99

Piping and Redirection
Saving to an Existing File

■ We can instead get the new data to be appended to the file by using the double
greater than operator (>>).

74 of 99

Piping and Redirection
Redirecting from a File
■ If we use the less than operator (<) then we can send data the other way. We will read

data from the file and feed it into the program via its STDIN stream.

■ We may easily combine the two forms of redirection we have seen so far into a single
command.

75 of 99

Piping and Redirection
Redirecting STDERR

■ The three streams actually have numbers associated with them. STDERR is stream
number 2 and we may use these numbers to identify the streams.

■ If we place a number before the ¿ operator then it will redirect that stream (if we
don’t use a number, like we have been doing so far, then it defaults to stream 1).

76 of 99

Piping and Redirection
Redirecting STDERR

■ We may wish to save both normal output and error messages into a single file. This
can be done by redirecting the STDERR stream to the STDOUT stream and
redirecting STDOUT to a file. We redirect to a file first then redirect the error stream.
We identify the redirection to a stream by placing an & in front of the stream number
(otherwise it would redirect to a file called 1).

77 of 99

Piping and Redirection
Piping

■ The mechanism for sending data from one program to another is called piping and the
operator we use is (|)

■ This operator feeds the output from the program on the left as input to the program
on the right.

78 of 99

Piping and Redirection
Piping

■ We may pipe as many programs together as we like.

■ Below we have piped the output to tail so as to get only the third file.

■ We may combine pipes and redirection too.

79 of 99

Piping and Redirection
Examples

■ We sort the listing of a directory so that all the directories are listed first.

■ We feed the output of a program into the program less so that we can view it easier.

80 of 99

Piping and Redirection
Examples
■ Identify all files in your home directory which the group has write permission for.

■ Create a listing of every user which owns a file in a given directory as well as how
many files and directories they own.

81 of 99

Piping and Redirection: Exercises

■ Experiment with saving output from various commands to a file. Overwrite the file
and append to it as well. Make sure you are using a both absolute and relative paths
as you go.

■ Now see if you can list only the 20th last file in the directory /etc.

■ Finally, see if you can get a count of how many files and directories you have the
execute permission for in your home directory.

82 of 99

Process Management
What Are They?

■ A program is a series of instructions that tell the computer what to do.

■ When we run a program, those instructions are copied into memory and space is
allocated for variables and other stuff required to manage its execution.

■ This running instance of a program is called a process and it’s processes which we
manage.

83 of 99

Process Management
What is Currently Running? ⇒ top
■ Linux is a multitasking operating system.
■ This means that many processes can be running at the same time.
■ As well as the processes we are running, there may be other users on the system also

running stuff and the OS itself will usually also be running various processes which it
uses to manage everything in general. If we would like to get a snapshot of what is
currently happening on the system we may use a program called top.

■ An alternative approach is using ps which stands for processes show the processes
running in your current terminal (ps [aux]). With the additional argument aux it
shows a complete system view.

84 of 99

Process Management
Killing a Crashed Process? ⇒ kill [signal] <PID>

■ Let’s suppose you have process not working (’Firefox’ say). It’s possible to identify it,
kill it and reopen it later.

85 of 99

Process Management
Foreground and Background Jobs ⇒ jobs

■ When we run a command by default, it is run on the foreground. If you append the
ampersand (&) at the end of the command then we are telling the terminal to run this
process in the background.

■ Applying the & you will notice that it assigns the process a job number an tells us
what that number is, and gives us the prompt back straight away. We can continue
working while the process runs in the background

86 of 99

Process Management
Foreground and Background Jobs ⇒ fg <job number>

■ We can move jobs between the foreground and background as well.

■ If you press CTRL + z then the currently running foreground process will be paused
and moved into the background.

■ We can then use a program called fg which stands for foreground to bring background
processes into the foreground.

87 of 99

Process Management: Exercises

■ Start a few programs in your desktop. Then use ps to identify their PID and kill them.

■ Play about with the command sleep and moving processes between the foreground
and background.

88 of 99

Bash Scripting
What are They?

■ A bash script is a document or file stating what to say and what to do by the
computer.

■ A bash script allows us to define a series of actions which the computer will then
perform without us having to enter the commands ourselves. If a particular task is
done often, or it is repetitive, then a script can be a useful tool.

■ A Bash script is interpreted (read and acted upon) by something called an interpreter.

■ Anything you can run on the command line you may place into a script and they will
behave exactly the same. Vice versa, anything you can put into a script, you may run
on the command line and again it will perform exactly the same.

■ A script is just a plain text file and it may have any name you like. You create them
the same way you would any other text file, with just a plain old text editor.

89 of 99

Bash Scripting
An Example ⇒ echo <message>

■ This script will print a message to the screen (using a program called echo) then give
us a listing of what is in our current directory.

90 of 99

Bash Scripting
The Shebang ⇒ which <program>

■ The very first line of a script should tell the system which interpreter should be used on
this file. It is important that this is the very first line of the script. It is also important
that there are no spaces. The first two characters #! (the shebang) tell the system
that directly after it will be a path to the interpreter to be used. If we don’t know
where our interpreter is located then we may use a program called which to find out.

The Name

■ Linux is an extensionless system. That means we may call our script whatever we like
and it will not affect it’s running in any way. While it is typical to put a .sh extension
on our scripts, this is purely for convenience and is not required. We could name our
script above simply myscript or even myscript.jpg and it would still run quite happily.

91 of 99

Bash Scripting
Comment

■ A comment is just a note in the script that does not get run, it is merely there for
your benefit.

■ Comments are easy to put in, all you need to do is place a hash (#) then anything
after that is considered a comment.

■ A comment can be a whole line or at the end of a line..

■ It is common practice to include a comment at the top of a script with a brief
description of what the script does and also who wrote it and when.

■ For the rest of the script, it is not necessary to comment every line. It will be self
explanatory what most lines they do. Only put comments in for important lines or to
explain a particular command whose operation may not be immediately obvious.

92 of 99

Bash Scripting
The ”./”:

■ When we type a command on the command line, the system runs through a preset
series of directories, looking for the program we specified.

■ We may find out these directories by looking at a particular variable PATH.

■ The system will look in the first directory and if it finds the program it will run it, if not
it will check the second directory and so on. Directories are separated by a colon (:).

■ The system will not look in any directories (not even your current directory) apart from
these. We can override this behaviour however by supplying a path: this will allow the
system to ignore the PATH and go straight to the location you have specified.

Permissions
■ A script must have the execute permission before we may run it (even if we are the

owner of the file). For safety reasons, you don’t have execute permission by default so
you have to add it. A good command to run to ensure your script is set up right is
chmod 755 <script>.

93 of 99

Bash Scripting
Variables

■ A variable is a container for a simple piece of data.

■ When we set a variable, we specify it’s name, followed directly by an equal sign (=)
followed directly by the value. (So, no spaces on either side of the = sign.)

■ When we refer to a variable, we must place a dollar sign ($) before the variable name.

94 of 99

Bash Scripting
Variables: Command Line Argument
When we run a script, there are several variables that get set automatically for us.
■ $0 – The name of the script.
■ $1--$9 – Any command line arguments given to the script. $1 is the first argument,

$2 the second and so on.
■ $# – How many command line arguments were given to the script.
■ $* – All of the command line arguments.

95 of 99

Bash Scripting
Variables: Back Ticks
You can save the output of a command to a variable and the mechanism we use for that
is the backtick (‘).

96 of 99

Bash Scripting
Variables: Backup Script
A sample backup script that you could organize for your various research projects.

97 of 99

Bash Scripting
If Statements
A sample script which exhibits the use of the if statement.

98 of 99

Bash Scripting: Exercises

■ Think about writing your own backup script. You can make it as simple or complex as
you like. Maybe start off with a really simple one and progressively improve it.

■ See if you can write a script that will give you a report about a given directory. Things

you could report on include:

□ How many files are in the directory?
□ How many directories are in the directory?
□ What is the biggest file?
□ What is the most recently modified or created file?
□ A list of people who own files in the directory.

□ Anything else you can think of.

99 of 99

